Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 709
Filtrar
1.
Pharm Biol ; 62(1): 195-206, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38339810

RESUMO

CONTEXT: Cephaeline is a natural product isolated from ipecac (Cephaelis ipecacuanha [Brot.] A. Rich. [Rubiaceae]). It exhibits promising anti-lung cancer activity and ferroptosis induction may be a key mechanism for its anti-lung cancer effect. OBJECTIVES: This study investigates the anti-lung cancer activity and mechanisms of cephaeline both in vitro and in vivo. MATERIALS AND METHODS: H460 and A549 lung cancer cells were used. The cephaeline inhibition rate on lung cancer cells was detected via a Cell Counting Kit-8 assay after treatment with cephaeline for 24 h. Subsequently, the concentrations of 25, 50 and 100 nM were used for in vitro experiments. In addition, the antitumour effects of cephaeline (5, 10 mg/kg) in vivo were evaluated after 12 d of cephaeline treatment. RESULTS: Cephaeline showed significant inhibitory effects on lung cancer cells, and the IC50 of cephaeline on H460 and A549 at 24, 48 and 72 h were 88, 58 and 35 nM, respectively, for H460 cells and 89, 65 and 43 nM, respectively, for A549 cells. Meanwhile, we demonstrated that ferroptosis is the key mechanism of cephaeline against lung cancer. Finally, we found that cephaeline induced ferroptosis in lung cancer cells by targeting NRF2. DISCUSSION AND CONCLUSION: We demonstrated for the first time that cephaeline inhibits NRF2, leading to ferroptosis in lung cancer cells. These findings may contribute to the development of innovative therapeutics for lung cancer.


Assuntos
Emetina/análogos & derivados , Ferroptose , Neoplasias Pulmonares , Humanos , Fator 2 Relacionado a NF-E2 , Emetina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico
2.
Structure ; 32(4): 400-410.e4, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38242118

RESUMO

Giardia lamblia is a deeply branching protist and a human pathogen. Its unusual biology presents the opportunity to explore conserved and fundamental molecular mechanisms. We determined the structure of the G. lamblia 80S ribosome bound to tRNA, mRNA, and the antibiotic emetine by cryo-electron microscopy, to an overall resolution of 2.49 Å. The structure reveals rapidly evolving protein and nucleotide regions, differences in the peptide exit tunnel, and likely altered ribosome quality control pathways. Examination of translation initiation factor binding sites suggests these interactions are conserved despite a divergent initiation mechanism. Highlighting the potential of G. lamblia to resolve conserved biological principles; our structure reveals the interactions of the translation inhibitor emetine with the ribosome and mRNA, thus providing insight into the mechanism of action for this widely used antibiotic. Our work defines key questions in G. lamblia and motivates future experiments to explore the diversity of eukaryotic gene regulation.


Assuntos
Giardia lamblia , Humanos , Giardia lamblia/genética , Giardia lamblia/química , Giardia lamblia/metabolismo , Emetina/farmacologia , Emetina/análise , Emetina/metabolismo , Microscopia Crioeletrônica , Ribossomos/química , RNA Mensageiro/metabolismo , Antibacterianos
3.
Virus Res ; 341: 199322, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228190

RESUMO

The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 ∼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 ∼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.


Assuntos
Alcaloides , Emetina , Emetina/análogos & derivados , Humanos , Emetina/farmacologia , Ipeca/farmacologia , Cardiotoxicidade , Antivirais/toxicidade
4.
Virol J ; 21(1): 5, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178163

RESUMO

Chikungunya virus (CHIKV) infection causes chikungunya, a viral disease that currently has no specific antiviral treatment. Several repurposed drug candidates have been investigated for the treatment of the disease. In order to improve the efficacy of the known drugs, combining drugs for treatment is a promising approach. The current study was undertaken to explore the antiviral activity of a combination of repurposed drugs that were reported to have anti-CHIKV activity. We explored the effect of different combinations of six effective drugs (2-fluoroadenine, emetine, lomibuvir, enalaprilat, metyrapone and resveratrol) at their non-toxic concentrations against CHIKV under post infection treatment conditions in Vero cells. Focus-forming unit assay, real time RT-PCR, immunofluorescence assay, and western blot were used to determine the virus titre. The results revealed that the combination of 2-fluoroadenine with either metyrapone or emetine or enalaprilat exerted inhibitory activity against CHIKV under post-infection treatment conditions. The effect of these drug combinations was additive in nature compared to the effect of the individual drugs. The results suggest an additive anti-viral effect of these drug combinations against CHIKV. The findings could serve as an outline for the development of an innovative therapeutic approach in the future to treat CHIKV-infected patients.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Chlorocebus aethiops , Humanos , Células Vero , Emetina/farmacologia , Emetina/uso terapêutico , Enalaprilato/farmacologia , Enalaprilato/uso terapêutico , Metirapona/farmacologia , Metirapona/uso terapêutico , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Combinação de Medicamentos
5.
J Cell Mol Med ; 27(23): 3839-3850, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37723905

RESUMO

Radiation-induced lung injury (RILI), divided into early radiation pneumonia (RP) and late radiation-induced pulmonary fibrosis (RIPF), is a common serious disease after clinical chest radiotherapy or nuclear accident, which seriously threatens the life safety of patients. There has been no effective prevention or treatment strategy till now. Epithelial-mesenchymal transition (EMT) is a key step in the occurrence and development of RILI. In this study, we demonstrated that emetine dihydrochloride (EDD) alleviated RILI through inhibiting EMT. We found that EDD significantly attenuated EMT-related markers, reduced Smad3 phosphorylation expression after radiation. Then, for the first time, we observed EDD alleviated lung hyperaemia and reduced collagen deposit induced by irradiation, providing protection against RILI. Finally, it was found that EDD inhibited radiation-induced EMT in lung tissues. Our study suggested that EDD alleviated RILI through inhibiting EMT by blocking Smad3 signalling pathways. In summary, our results indicated that EDD is a novel potential radioprotector for RILI.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Lesões por Radiação , Humanos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Emetina/farmacologia , Pulmão/patologia , Lesões por Radiação/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Transição Epitelial-Mesenquimal
6.
Acta Trop ; 245: 106980, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37419379

RESUMO

Trypanosoma evansi, a hemoflagellate poses huge economic threat to the livestock industry of several countries of Asia, Africa, South America and Europe continents of the world. Limited number of available chemical drugs, incidents of growing drug resistance, and related side effects encouraged the use of herbal substitutes. In the present investigation, the impact of six alkaloids of quinoline and isoquinoline group was evaluated on the growth and multiplication of Trypanosoma evansi and their cytotoxic effect was examined on horse peripheral blood mononuclear cells in an in vitro system. Quinine, quinindine, cinchonine, cinchonidine, berbamine and emetine showed potent trypanocidal activities with IC50/24 h values 6.631 ± 0.244, 8.718 ± 0.081, 16.96 ± 0.816, 33.38 ± 0.653, 2.85 ± 0.065, and 3.12 ± 0.367 µM, respectively, which was comparable to the standard anti-trypanosomal drug, quinapyramine sulfate (20 µM). However, in the cytotoxicity assay, all the drugs showed dose dependent cytotoxic effect and quinine, berbamine and emetine showed selectivity index more than 5, based of ration of CC50 to IC50. Among the selected alkaloids, quinidine, berbamine and emetine exhibited higher apoptotic effects in T. evansi. Likewise, drug treated parasites showed a dose-dependent and time-dependent increase in reactive oxygen species (ROS) production. Therefore, increased apoptosis in combination with ROS generation could be responsible for the observed trypanocidal effect which could be further evaluated in T. evansi-infected mice model.


Assuntos
Alcaloides , Tripanossomicidas , Trypanosoma , Tripanossomíase , Camundongos , Animais , Cavalos , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Espécies Reativas de Oxigênio , Emetina/farmacologia , Emetina/uso terapêutico , Quinina/farmacologia , Quinina/uso terapêutico , Leucócitos Mononucleares , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Isoquinolinas/farmacologia , Tripanossomíase/tratamento farmacológico
7.
Cancer Chemother Pharmacol ; 91(4): 303-315, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941385

RESUMO

BACKGROUND: Gastric cancer (GC) is a life-threatening malignant tumor with high incidence rate. Despite great progress, there are still many GC sufferers that cannot benefit from the existing anti-GC treatments. Therefore, it is still necessary to develop novel medicines against GC. Emetine, a natural small molecule isolated from Psychotria ipecacuanha, has been broadly used for medicinal purposes including cancer treatment. Here, we conducted a comprehensive study on the anti-GC effects of emetine and the related mechanisms of action. METHODS: The cell viability was evaluated by MTT and colony formation assay. Cellular proliferation and apoptosis were analyzed by edu incorporation assay and Annexin V-PI staining, respectively. Moreover, wound healing assay and transwell invasion assay were conducted to detect cell migration and invasion after treatment with emetine. To elucidate the molecular mechanism involved in the anti-GC effects of emetine, RNA sequencing and functional enrichment analysis were carried out on MGC803 cells. Then, the western blot analysis was performed to further verify the anti-GC mechanism of emetine. In vivo anti-tumor efficacy of emetine was evaluated in the MGC803 xenograft model. RESULTS: MTT and colony formation assay exhibited a strong potency of emetine against GC cell growth, with IC50 values of 0.0497 µM and 0.0244 µM on MGC803 and HGC-27 cells, respectively. Further pharmacodynamic studies revealed that emetine restrained the growth of GC cells mainly via proliferation inhibition and apoptosis induction. Meanwhile, emetine also had the ability to block GC cell migration and invasion. The results of RNA sequencing and western blot showed that emetine acted through regulating multiple signaling pathways, including not only MAPKs and Wnt/ß-catenin signaling axes, but also PI3K/AKT and Hippo/YAP signaling cascades that were not found in other tumor types. Notably, the antitumor efficacy of emetine could also be observed in MGC803 xenograft models. CONCLUSION: Our data demonstrate that emetine is a promising lead compound and even a potential drug candidate for GC treatment, deserving further structural optimization and development.


Assuntos
Emetina , Neoplasias Gástricas , Humanos , Emetina/farmacologia , Emetina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Gástricas/metabolismo , Proliferação de Células , Via de Sinalização Wnt , Linhagem Celular Tumoral , Movimento Celular , Apoptose
8.
J Infect Public Health ; 16(5): 754-770, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958171

RESUMO

Nature has given us yet another wild card in the form of Zika virus (ZIKV). It was found in 1947, but has only recently become an important public health risk, predominantly to pregnant women and their unborn offspring. Currently, no specific therapeutic agent exists for ZIKV and treatment is mainly supportive. Natural products (NPs) can serve as a major source of potent antiviral drugs. To create this review, a comprehensive search was conducted from different databases (PubMed, ScienceDirect, Google scholar). A statistical analysis on the number of publications related to NPs and ZIKV was conducted to analyse the trend in research covering the period 1980-2020. From the data collated in this review, a number of NPs have been found to be inhibitive towards different stages of the ZIKV lifecycle in in vitro studies. For instance, baicalin, (-)-epigallocatechin gallate, curcumin, nanchangmycin, gossypol, cephaeline, emetine, resveratrol, berberine, amongst others, can prevent viral entry by attacking ZIKV E protein. Compounds luteolin, myricetin, astragalin, rutin, (-)-epigallocatechin gallate, carnosine, pedalitin, amongst others, inhibited NS2B-NS3 protease activity which consequently hamper replication. Interestingly, a few NPs had the ability to arrest both viral entry and replication, namely baicalin, (-)-epigallocatechin gallate, curcumin, cephaeline, emetine, and resveratrol. To the best of our knowledge, we obtained only one in vivo study conducted on emetine and results showed that it decreased the levels of circulating ZIKV by approximately 10-fold. Our understanding on NPs exhibiting anti-ZIKV effects in in vivo testing as well as clinical trials is limited. Our trend analysis showed that interest in searching for a cure or prevention against Zika in NPs is negligible and there are no publications yet covering the clinical evaluation. NPs with anti-ZIKV property can a winning strategy in controlling the bio-burden of an epidemic or pandemic. We therefore opine that in the future, more research should be devoted to ZIKV. This review attempts to provide baseline data and roadmap to pursuit detailed investigations for developing potent and novel therapeutic agents to prevent and cure ZIKV infection.


Assuntos
Curcumina , Infecção por Zika virus , Zika virus , Humanos , Feminino , Gravidez , Emetina/farmacologia , Emetina/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Infecção por Zika virus/prevenção & controle , Antivirais/farmacologia , Antivirais/uso terapêutico
9.
Life Sci Alliance ; 5(12)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36260751

RESUMO

DNA synthesis of the leading and lagging strands works independently and cells tolerate single-stranded DNA generated during strand uncoupling if it is protected by RPA molecules. Natural alkaloid emetine is used as a specific inhibitor of lagging strand synthesis, uncoupling leading and lagging strand replication. Here, by analysis of lagging strand synthesis inhibitors, we show that despite emetine completely inhibiting DNA replication: it does not induce the generation of single-stranded DNA and chromatin-bound RPA32 (CB-RPA32). In line with this, emetine does not activate the replication checkpoint nor DNA damage response. Emetine is also an inhibitor of proteosynthesis and ongoing proteosynthesis is essential for the accurate replication of DNA. Mechanistically, we demonstrate that the acute block of proteosynthesis by emetine temporally precedes its effects on DNA replication. Thus, our results are consistent with the hypothesis that emetine affects DNA replication by proteosynthesis inhibition. Emetine and mild POLA1 inhibition prevent S-phase poly(ADP-ribosyl)ation. Collectively, our study reveals that emetine is not a specific lagging strand synthesis inhibitor with implications for its use in molecular biology.


Assuntos
DNA de Cadeia Simples , Emetina , Emetina/farmacologia , DNA/genética , Replicação do DNA , Cromatina
10.
Cells ; 11(18)2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36139404

RESUMO

Chloroquine and Emetine are drugs used to treat human parasitic infections. In addition, it has been shown that these drugs have an antiviral effect. Both drugs were also found to cause a suppressive effect on the growth of cancer cells of different origins. Here, using the replication-deficient HIV-1-based lentiviral vector particles, we evaluated the ability of the combination of these drugs to reduce viral transduction efficiency. We showed that these drugs act synergistically to decrease cancer cell growth when added in combination with medium containing lentiviral particles. We found that the combination of these drugs with lentiviral particles decreases the viability of treated cells. Taken together, we state the oncolytic potential of the medium containing HIV-1-based particles provoked by the combination of Chloroquine and Emetine.


Assuntos
HIV-1 , Antivirais , Cloroquina/farmacologia , Emetina/farmacologia , Humanos
11.
Cell Cycle ; 21(22): 2379-2386, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35852390

RESUMO

Emetine is one of the most highly potent anti-SARS-CoV-2 agents ever identified. In addition to having strong anti-SARS-CoV-2 activities, emetine has other valuable therapeutic effects such as strong anti-inflammatory and anti-arterial pulmonary hypertension (APH) properties, which are suitable for the treatment of COVID-19. Its proper concomitant therapeutic effect has led researchers to test this compound in clinical trials to combat COVID-19. However, due to the risks of cardiac complications, very low doses of emetine have been used in different studies, which may not have significant therapeutic effects. The p38 MAPK signaling pathway is strongly highlighted as an important operator in cardiac cellular damages such as disruption of cardiac fibroblast function and myopathy/cardiomyopathy. Inhibition of this pathway by appropriate inhibitors has also been considered by scientists as a promising strategy for the treatment of fatal host-related hyper-inflammatory immune responses following SARS-CoV-2 infection. Although remarkable stimulatory effects of emetine on activation of the p38 MAPK pathway have been reported in recent studies and strong evidence suggests that this pathway plays an effective role in the emetine's toxicities, it has not been discussed yet that emetine induced cellular cardiac complications may be due to the activation of this critical pathway. Considering these points could lead to the finding of strategies for applying the valuable potential of emetine in the treatment of COVID-19 at low risks.


Assuntos
Tratamento Farmacológico da COVID-19 , Emetina , Humanos , Emetina/farmacologia , SARS-CoV-2 , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
BMC Cancer ; 22(1): 687, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733175

RESUMO

BACKGROUND: Patients with lung adenocarcinoma (LUAD) may be more predisposed to coronavirus disease 2019 (COVID-19) and have a poorer prognosis. Currently, there is still a lack of effective anti-LUAD/COVID-19 drugs. Thus, this study aimed to screen for an effective anti-LUAD/COVID-19 drug and explore the potential mechanisms. METHODS: Firstly, we performed differentially expressed gene (DEG) analysis on LUAD transcriptome profiling data in The Cancer Genome Atlas (TCGA), where intersections with COVID-19-related genes were screened out. Then, we conducted Cox proportional hazards analyses on these LUAD/COVID-19 DEGs to construct a risk score. Next, LUAD/COVID-19 DEGs were uploaded on Connectivity Map to obtain drugs for anti-LUAD/COVID-19. Finally, we used network pharmacology, molecular docking, and molecular dynamics (MD) simulation to explore the drug's therapeutic targets and potential mechanisms for anti-LUAD/COVID-19. RESULTS: We identified 230 LUAD/COVID-19 DEGs and constructed a risk score containing 7 genes (BTK, CCL20, FURIN, LDHA, TRPA1, ZIC5, and SDK1) that could classify LUAD patients into two risk groups. Then, we screened emetine as an effective drug for anti-LUAD/COVID-19. Network pharmacology analyses identified 6 potential targets (IL6, DPP4, MIF, PRF1, SERPING1, and SLC6A4) for emetine in anti-LUAD/COVID-19. Molecular docking and MD simulation analyses showed that emetine exhibited excellent binding capacities to DDP4 and the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CONCLUSIONS: This study found that emetine may inhibit the entry and replication of SARS-CoV-2 and enhance tumor immunity by bounding to DDP4 and Mpro.


Assuntos
Adenocarcinoma de Pulmão , Tratamento Farmacológico da COVID-19 , Emetina , Neoplasias Pulmonares , SARS-CoV-2 , Adenocarcinoma de Pulmão/complicações , Adenocarcinoma de Pulmão/tratamento farmacológico , Biologia Computacional , Proteínas de Ligação a DNA/genética , Emetina/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Fatores de Transcrição/genética
13.
J Oral Pathol Med ; 51(6): 553-562, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34661317

RESUMO

AIM: To evaluate the potential use of Cephaeline as a therapeutic strategy to manage mucoepidermoid carcinomas (MEC) of the salivary glands. MATERIAL AND METHODS: UM-HMC-1, UM-HMC-2, and UM-HMC-3A MEC cell lines were used to establish the effects of Cephaeline over tumor viability determined by MTT assay. In vitro wound healing scratch assays were performed to address cellular migration while immunofluorescence staining for histone H3 lysine 9 (H3k9ac) was used to identify the acetylation status of tumor cells upon Cephaeline administration. The presence of cancer stem cells was evaluated by the identification of ALDH enzymatic activity by flow cytometry and through functional assays using in vitro tumorsphere formation. RESULTS: A single administration of Cephaeline resulted in reduced viability of MEC cells along with the halt on tumor growth and cellular migration potential. Administration of Cephaeline resulted in chromatin histone acetylation as judged by the increased levels of H3K9ac and disruption of tumorspheres formation. Interestingly, ALDH levels were increased in UM-HMC-1 and UM-HMC-3A cell lines, while UM-HMC-2 showed a reduced enzymatic activity. CONCLUSION: Cephaeline has shown anti-cancer properties in all MEC cell lines tested by regulating tumor cells' viability, migration, proliferation, and disrupting the ability of cancer cells to generate tumorspheres.


Assuntos
Carcinoma Mucoepidermoide , Acetilação/efeitos dos fármacos , Carcinoma Mucoepidermoide/metabolismo , Linhagem Celular Tumoral , Emetina/análogos & derivados , Emetina/farmacologia , Histonas/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia
14.
Eur J Pharmacol ; 914: 174665, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34861208

RESUMO

INTRODUCTION: The function of endoplasmic reticulum (ER), a Ca2+ storage compartment and site of protein folding, is altered by disruption of intracellular homeostasis. Misfolded proteins accumulated in the ER lead to ER stress (ERS), unfolded protein response (UPR) activation and ER Ca2+ loss. Myocardial stunning is a temporary contractile dysfunction, which occurs after brief ischemic periods with minimal or no cell death, being oxidative stress and Ca2+ overload potential underlying mechanisms. Myocardial stunning induces ERS response with negatively impact on the post-ischemic mechanical performance through an unknown mechanism. AIMS: In this study, we explored whether ER Ca2+ efflux through the translocon, a major Ca2+ leak channel, contributes to Ca2+ mishandling and the consequent contractile abnormalities of the stunned myocardium. METHODS: Mechanical performance, cytosolic Ca2+, UPR markers and oxidative state were evaluated in perfused rat/mouse hearts subjected to a brief ischemia followed by reperfusion (I/R) in absence or presence of the translocon inhibitor, emetine (1 µM), comparing its effects with those of the chaperones TUDCA (30 µM) and 4-PBA (3 mM). RESULTS: Emetine treatment precluded the I/R-induced increase in UPR signaling markers and improved the contractile recovery together with a remarkable attenuation in myocardial stiffness when compared to I/R hearts with no drug. This alleviation of I/R-induced mechanical abnormalities was more effective than that obtained with the chemical chaperones, TUDCA and 4-PBA. Moreover, emetine treatment produced a striking improvement in diastolic Ca2+ handling with a partial recovery of the I/R-induced oxidative stress. CONCLUSION: Blocking ER Ca2+ store depletion via translocon suppressed ER stress and improved mechanical performance and diastolic Ca2+ handling of stunned myocardium. Modulation of translocon permeability emerges as a therapeutic approach to face dysfunctional consequences of the I/R injury.


Assuntos
Cálcio/metabolismo , Emetina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Contração Miocárdica , Miocárdio Atordoado , Canais de Translocação SEC/antagonistas & inibidores , Resposta a Proteínas não Dobradas , Animais , Sinalização do Cálcio , Camundongos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Miocárdio Atordoado/tratamento farmacológico , Miocárdio Atordoado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia
15.
J Biomol Struct Dyn ; 40(20): 10122-10135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34254564

RESUMO

The main objective of this study is to find out the anti-SARS-CoV-2 potential of emetine by using molecular docking and dynamic simulation approaches. Interestingly, molecular docking studies suggest that Emetine showed significant binding affinity toward Nsp15 (-10.8 kcal/mol) followed by Nsp12 (-9.5 kcal/mol), RNA-dependent RNA polymerase, RdRp (-9.5 kcal/mol), Nsp16 (-9.4 kcal/mol), Nsp10 (-9.2 kcal/mol), Papain-like protein (-9.0 kcal/mol), Nsp13 (-9.0 kcal/mol), Nsp14 (-8.9 kcal/mol) and Spike Protein Receptor Domain (-8.8 kcal/mol) and chymotrypsin-like protease, 3CLpro (-8.5 kcal/mol), respectively, which are essential for viral infection and replication. In addition, molecular dynamic simulation (MD) was also performed for 140 ns to explore the stability behavior of the main targets and inhibitor complexes as well as the binding mechanics of the ligand to the target proteins. The obtained MD results followed by absolute binding energy calculation confirm that the binding of emetine at the level of the various receptors is more stable. The complex EmetineNSP15, mechanistically was stabilized as follows: Emetine first binds to the monomer, after, binds to the second inducing the formation of a dimer which in turn leading to the formation of complex that simulation stabilizes it at a value less than 5 Å. Overall, supported by the powerful and good pharmacokinetic data of Emetine, our findings with clinical trials may be helpful to confirm that Emetine could be promoted in the prevention and eradication of COVID-19 by reducing the severity in the infected persons and therefore can open possible new strategies for drug repositioning. Communicated by Ramaswamy H. Sarma.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus , Emetina , Inibidores de Proteases , SARS-CoV-2 , Emetina/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Papaína , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores
16.
J Biochem Mol Toxicol ; 35(10): e22868, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34338395

RESUMO

Osteosarcoma (OS) is a primary bone neoplasm that is highly malignant. As advances in chemotherapy for the treatment of OS have stagnated, discovery of new reagents is required. Emetine is a phytochemical which can be isolated from a medicinal herb Cephaelis ipecacuanha and is traditionally used for amoebicides. Previous studies have demonstrated that emetine can possibly be repositioned for use in anticancer reagents. However, any anticancer effects and underlying mechanisms of emetine on human OS are not yet well understood. In this study, we analyzed the anticancer effects and involved cellular mechanisms after treatment with emetine to U2OS human OS cells. Emetine significantly reduced both the viability and proliferation, and induced apoptosis via activation of caspase-3 and caspase-7 in U2OS cells. Emetine effectively inhibited the migration and invasion of U2OS cells. Gelatinase activities of matrix metalloproteinase 2 (MMP-2) and MMP-9 were reduced by emetine. MMP-9 was transcriptionally inhibited, while MMP-2 was posttranscriptionally repressed, via the reduced expression of membrane-type I-matrix metalloproteinase (MT1-MMP). p38, which is closely related with induction of apoptosis, was stimulated by emetine. Extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and ß-catenin, which are linked with expression of MMPs, were downregulated. Emetine exerted anticancer effects on MG63 human OS cells as well. Taken together, our study demonstrated the anticancer and antimetastatic potential of emetine in treating human OS for the first time. It is expected that emetine may be a promising drug candidate to be repositioned for chemotherapy of OS.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/metabolismo , Cephaelis/química , Emetina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteossarcoma/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , beta Catenina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Osteossarcoma/patologia
17.
Life Sci ; 280: 119752, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171382

RESUMO

AIMS: Angiotensin-converting enzyme 2 (ACE2) is a key negative regulator of the renin-angiotensin system and also a major receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we reveal a role for NF-κB in human lung cell expression of ACE2, and we further explore the potential utility of repurposing NF-κB inhibitors to downregulate ACE2. MAIN METHODS: Expression of ACE2 was assessed by Western blotting and RT-qPCR in multiple human lung cell lines with or without NF-κB inhibitor treatment. Surface ACE2 expression and intracellular reactive oxygen species (ROS) levels were measured with flow cytometry. p50 was knocked down with siRNA. Cytotoxicity was monitored by PARP cleavage and MTS assay. KEY FINDINGS: Pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, suppressed endogenous ACE2 mRNA and protein expression in H322M and Calu-3 cells. The ROS level in H322M cells was increased after PDTC treatment, and pretreatment with N-acetyl-cysteine (NAC) reversed PDTC-induced ACE2 suppression. Meanwhile, treatment with hydrogen peroxide augmented ACE2 suppression in H322M cells with p50 knockdown. Two repurposed NF-κB inhibitors, the anthelmintic drug triclabendazole and the antiprotozoal drug emetine, also reduced ACE2 mRNA and protein levels. Moreover, zinc supplementation augmented the suppressive effects of triclabendazole and emetine on ACE2 expression in H322M and Calu-3 cells. SIGNIFICANCE: These results suggest that ACE2 expression is modulated by ROS and NF-κB signaling in human lung cells, and the combination of zinc with triclabendazole or emetine shows promise for clinical treatment of ACE2-related disease.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Antiparasitários/farmacologia , Regulação para Baixo/efeitos dos fármacos , Emetina/farmacologia , NF-kappa B/antagonistas & inibidores , Triclabendazol/farmacologia , Zinco/farmacologia , COVID-19/genética , Linhagem Celular , Reposicionamento de Medicamentos , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pirrolidinas/farmacologia , Tiocarbamatos/farmacologia , Tratamento Farmacológico da COVID-19
18.
Antiviral Res ; 189: 105056, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711336

RESUMO

Emetine is a FDA-approved drug for the treatment of amebiasis. Previously we demonstrated the antiviral efficacy of emetine against some RNA and DNA viruses. In this study, we evaluated the in vitro antiviral efficacy of emetine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and found it to be a low nanomolar (nM) inhibitor. Interestingly, emetine exhibited protective efficacy against lethal challenge with infectious bronchitis virus (IBV; a chicken coronavirus) in the embryonated chicken egg infection model. Emetine treatment led to a decrease in viral RNA and protein synthesis without affecting other steps of viral life cycle such as attachment, entry and budding. In a chromatin immunoprecipitation (CHIP) assay, emetine was shown to disrupt the binding of SARS-CoV-2 mRNA with eIF4E (eukaryotic translation initiation factor 4E, a cellular cap-binding protein required for initiation of protein translation). Further, molecular docking and molecular dynamics simulation studies suggested that emetine may bind to the cap-binding pocket of eIF4E, in a similar conformation as m7-GTP binds. Additionally, SARS-CoV-2 was shown to exploit ERK/MNK1/eIF4E signalling pathway for its effective replication in the target cells. Collectively our results suggest that further detailed evaluation of emetine as a potential treatment for COVID-19 may be warranted.


Assuntos
Antivirais , Emetina , Vírus da Bronquite Infecciosa/efeitos dos fármacos , RNA Viral/metabolismo , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Embrião de Galinha , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Emetina/farmacologia , Emetina/uso terapêutico , Fator de Iniciação 4E em Eucariotos/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais , Células Vero
19.
Elife ; 92020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32844748

RESUMO

Puromycin is a tyrosyl-tRNA mimic that blocks translation by labeling and releasing elongating polypeptide chains from translating ribosomes. Puromycin has been used in molecular biology research for decades as a translation inhibitor. The development of puromycin antibodies and derivatized puromycin analogs has enabled the quantification of active translation in bulk and single-cell assays. More recently, in vivo puromycylation assays have become popular tools for localizing translating ribosomes in cells. These assays often use elongation inhibitors to purportedly inhibit the release of puromycin-labeled nascent peptides from ribosomes. Using in vitro and in vivo experiments in various eukaryotic systems, we demonstrate that, even in the presence of elongation inhibitors, puromycylated peptides are released and diffuse away from ribosomes. Puromycylation assays reveal subcellular sites, such as nuclei, where puromycylated peptides accumulate post-release and which do not necessarily coincide with sites of active translation. Our findings urge caution when interpreting puromycylation assays in vivo.


Assuntos
Núcleo Celular , Biossíntese de Proteínas , Inibidores da Síntese de Proteínas , Puromicina , Animais , Caenorhabditis elegans , Núcleo Celular/química , Núcleo Celular/metabolismo , Emetina/metabolismo , Emetina/farmacologia , Peptídeos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Inibidores da Síntese de Proteínas/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Puromicina/metabolismo , Puromicina/farmacologia , RNA de Transferência/metabolismo , Coelhos , Ribossomos/metabolismo , Análise de Célula Única
20.
Viruses ; 12(6)2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545799

RESUMO

As of June 2020, the number of people infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) continues to skyrocket, with more than 6.7 million cases worldwide. Both the World Health Organization (WHO) and United Nations (UN) has highlighted the need for better control of SARS-CoV-2 infections. However, developing novel virus-specific vaccines, monoclonal antibodies and antiviral drugs against SARS-CoV-2 can be time-consuming and costly. Convalescent sera and safe-in-man broad-spectrum antivirals (BSAAs) are readily available treatment options. Here, we developed a neutralization assay using SARS-CoV-2 strain and Vero-E6 cells. We identified the most potent sera from recovered patients for the treatment of SARS-CoV-2-infected patients. We also screened 136 safe-in-man broad-spectrum antivirals against the SARS-CoV-2 infection in Vero-E6 cells and identified nelfinavir, salinomycin, amodiaquine, obatoclax, emetine and homoharringtonine. We found that a combination of orally available virus-directed nelfinavir and host-directed amodiaquine exhibited the highest synergy. Finally, we developed a website to disseminate the knowledge on available and emerging treatments of COVID-19.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Testes de Neutralização/métodos , Pneumonia Viral/tratamento farmacológico , Amodiaquina/farmacologia , Animais , COVID-19 , Células CACO-2 , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Coronavirus/terapia , Quimioterapia Combinada , Emetina/farmacologia , Células HEK293 , Células HT29 , Mepesuccinato de Omacetaxina/farmacologia , Humanos , Soros Imunes/imunologia , Imunização Passiva/métodos , Indóis , Nelfinavir/farmacologia , Pandemias , Piranos/farmacologia , Pirróis/farmacologia , SARS-CoV-2 , Células Vero , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...